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1 Introduction

This plug-in implements the one-factor squared Gaussian model. For general
references on the squared Gaussian model see Pelsser [1] and [2].

2 How to use the plug-in

• In the Fairmat user interface when you create a new stochastic process
you will find the additional option “Pelsser Squared Gaussian model”.

• The stochastic process is defined by the parameters shown in table below.

Description
Fairmat Documentation
notation notation

mean reversion rate (scalar) a1 a
diffusion parameter (scalar) sigma1 σ

See section 3 about parameters’ meaning.

3 Implementation Details

3.1 Introduction on one-factor Squared Gaussian model

The one-factor squared Gaussian model assumes that the spot interest rate is a
quadratic function of the underlying process. This type of models is known as
squared Gaussian models and it provides the advantage that the interest rates
never become negative. The squared Gaussian is a no-arbitrage model, so it can
be fitted to the initial term-structure of interest rates.

3.2 Spot Rate Process

The dynamics of the one-factor squared Gaussian model under the equivalent
martingale measure are given by{

dy = −ay dt+ σ dW ∗

r = (y + α(t))
2 (1)
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where W ∗ denotes Brownian Motion under the equivalent martingale measure.
Furthermore, a and σ are constants and α(t) is an arbitrary function of time
which allows the model to be fitted to the initial term-structure of interest rates.

If we apply Itô’s Lemma to (1), we can derive the following evolution of the
spot rate (under the equivalent martingale measure)

dr = θ∗(t, r) dt+ 2σ
√
r dW ∗ , (2)

where

θ∗(t, r) = σ2 + 2

(
∂

∂t
α(t) + aα(t)

)√
r − 2ar. (3)

This model is in general not a square root process, only in the case α(t) ≡ 0 it
reduces to a square root model with dimension d = 1.

The existence and uniqueness of the equivalent martingale measure (or risk-
neutral measure) is equivalent to the following restriction on the drift-term θ of
the spot rate process

dr = θ(t, ω)dt+ 2σ
√
rdW (4)

where W denotes Brownian Motion under the “real world” probability-measure.
The drift term θ is restricted to be θ(t, ω) = θ∗(t, r)+λ(t, ω)2σ

√
r, where λ(t, ω)

denotes the market price of risk.
Given the dynamics of the spot interest rate specified in (1), the price at

time t of any interest rate derivative security in terms of y can be written as
function h(t, y), and this must satisfy the partial differential equation (PDE)

∂

∂t
h(t, y)− ay ∂

∂y
h(t, y) +

1

2
σ2 ∂

2

∂y2
h(t, y)− (y + α(t))

2
h(t, y) = 0 (5)

3.3 Analytical Formulæ

The price h(t, y;T ) at time t of an interest rate derivative that has a payoff
H (y(T )) at maturity T , can be calculate by solving the PDE (5) subject to the
boundary condition h (T, y(T );T ) = H (y(T )) at time T . Using the Feynman-
Kac formula one can show that h(t, y;T ) can be expressed as the expectation
of the discounted payoff

h(t, y;T ) = E∗

e−
∫ T

t

r(s) ds
H (y(T ))

∣∣∣∣∣Ft


= E∗

e−
∫ T

t

r(s) ds
H (y(T ))

∣∣∣∣∣Ft
 (6)

where E∗(·|Ft) is the expectation, conditional on the information available at
time t, with respect to the process y under the risk-neutral measure. Since the
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discounting term and the payoff term are two correlated stochastic variables,
the expectation E∗ is, in general, difficult to evaluate. It is also possible to
compute prices as

h(t, y;T ) = P (t, T, y)ET (H(y(T ))|Ft) (7)

where P (t, T, y) denotes the price of a discount bond with maturity T , and ET

denotes the expectation under the so-called T -forward-risk-adjusted measure.

3.4 Bond Price formula

As was shown by Pelsser [1] the price of a discount bond P (t, T, y) is given by

P (t, T, y) = eA(t, T )−B(t, T )y − C(t, T )y2 . (8)

where

D(t, T ) =
2γeγ(T−t)

(a+ γ)e2γ(T−t) + (γ − a)

C(t, T ) =
e2γ(T−t) − 1

(a+ γ)e2γ(T−t) + (γ − a)

B(t, T ) = 2D(t, T )

∫ T

t

α(s)

D(s, T )
ds

A(t, T ) =

∫ T

t

1

2
σ2B(s, T )2 − σ2C(s, T )− α(s)2 ds

γ =
√
a2 + 2σ2 . (9)

3.5 Fitting the Model to the Initial Yield-Curve

Yield-curve models take the initial yield-curve as an input, and price all interest
rate derivatives off this curve using no-arbitrage arguments. The model we are
considering can be fitted to the initial yield-curve by choosing α(t) such that
the initial discount bond prices P (0, T, 0) are priced correctly.
Using the identity

f(t, T ) = − ∂

∂T
logP (t, T, y) , (10)

the prices of all instantaneous forward rate f(0, T ) can be calculated from the
discount bond prices. The value of α(t) can be related to f(0, T ), and we obtain

f(0, T ) = Σ(0, T ) +

(
α(T )− σ2

∫ T

0

D(s, T )B(s, T ) ds

)2

, (11)

where
Σ(0, T ) = σ2C(0, T ) .
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If f(0, T ) ≥ Σ(0, T ), we can define

F (T ) =
√
f(0, T )− Σ(0, T ) , (12)

and it can be demonstrated that

α(T ) = F (T ) + 2

∫ T

0

e−a(T − s)Σ(0, s)F (s) ds . (13)

4 Calibration

Parameter estimation is carried out by fitting cap prices, starting from a matrix
of Black-caps volatilities (the standard market model [3]).

4.1 Objective Function

The estimator tries to minimize the differences between the Black-caps prices
and the prices of caps with the “Pelsser squared gaussian” model (see sec-
tion 4.2), i.e. the following objective function

n∑
i=1

(
Pelsseri(α, σ)−Blacki

)2
, (14)

where Pelsseri(α, σ) is the price of the ith-cap by “Pelsser squared gaussian”
model, Blacki the price of the ith cap by the Black model, and n the number
of all caps into the caps-volatility matrix.

4.2 Option Prices with the Pelsser model

Let us consider a European call option on a discount bond [2]. Let C(t, T, T ,K, y)
denote the price at time t of a call option that gives at time T the right to buy
a discount bond with maturity T for a price K, with t < T < T . Suppose that
at time T the value of y(T ) is equal to z, then the payoff of this option is equal
to

max {P (T, T , z)−K, 0} .

The payout of the option in non-zero if

P (T, T , z) = eA(t, T )−B(t, T )z − C(t, T )z2 > K.

This is true if

l =
−B(T, T )−

√
d

2C(T, T )
< z <

−B(T, T ) +
√
d

2C(T, T )
= h

where
d = B(T, T )

2
+ 4C(T, T )(A(T, T )− logK) .
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If d > 0 (discriminant), we can express the price C(t, T, T ,K, y) in terms of
cumulative normal distribution functions Φ as follows

C(t, T, T ,K, y) = P (t, T , y)

[
Φ

(
hτ − ν√
τΣ(t, T )

)
− Φ

(
lτ − ν√
τΣ(t, T )

)]
(15)

−P (t, T, y)K

[
Φ

(
h− µ(t, T, y)√

Σ(t, T )

)
− Φ

(
l − µ(t, T, y)√

Σ(t, T )

)]

with

ν = µ(t, T, y)−B(T, T )Σ(t, T )

τ = 1 + 2C(T, T )Σ(t, T )

µ(t, T, y) = D(t, T )y − σ2

∫ T

t

D(s, T )B(s, T ) ds

Σ(t, T ) = σ2

∫ T

t

D(s, T )
2
ds .

The price for a put option on a discount bond can be derived in a similar fashion.
With the analytical formulae for call- and put-options on discount bonds, prices
can be calculated for the interest rate derivatives that are currently traded. For
the calibration of parameters, of the Pelsser squared gaussian model, caps and
floors can be decomposed as portfolios of puts and calls on discount bonds, see
e.g. Hull and White [3].
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