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1 Introduction

This plug-in implements the Dupire local volatility model. The main character-
istic of the Dupire model is that is consistent with the surface of option prices
(across strikes and maturities) given that its diffusion is governed by a state and
time dependent volatility. For a general reference on local volatility models see
[1], [2], [3].

2 How to use the plug-in

2.1 Dupire local volatility process

In the Fairmat user interface when you create a new stochastic process you will
find the additional option “Dupire local volatility”.

The stochastic process is defined by the parameters shown in table below:

Fairmat Documentation
notation notation
S0 S0

Time Dependent Risk Free Rate (Zero Rate) r(t)
Time Dependent Continuous Dividend Yield q(t)
Local Volatility σ(t, s)

S0 is the starting values for the stock process r(t) and q(t) are one dimensional
function while σ(t, s) is a two dimensional function.

In order to use the plug-in function r and q must be defined in the Symbol
lists and the stochastic process reference them: note that to specify a reference
to a function defined in a Fairmat model (i.e q) the notation @q must be used.

3 Implementation Details

The Dupire local volatility model is used to describe the evolution of a stock
price (or an index) with a volatility that is a function of time and index value.
The process is defined by the following stochastic differential equation

1
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dS(t) = (r(t)− q(t))S(t)dt+ σ(t, S(t))S(t)dW (t) (1)

where S represents the price process, and dW is a Wiener processes.

3.1 Simulation and discretization scheme

Applying straight Euler-Maruyama method to simulate a local volatility process,
we obtain the following formula

Sn+1 = Sn + [r(tn)− q(tn)]Sn∆t+ σ(tn, Sn)
√

∆tN(0, 1) (2)

where ∆t = tn+1− tn and N(0, 1) represents a realization of a standard normal
random variable.

By using the discretization described above it is possible for S to reach
negative values, therefore the best approach to overcome the problem is to
simulate log(S(t)) process. Apply Ito’s lemma, from equation (1) we can deduce

d [log (S(t))] =

[
r(t)− q(t)− 1

2
σ2(t, S(t))

]
dt+ σ(t, S(t))dW (3)

and its discrete counterpart is

log(Sn+1) = log(Sn) +

[
r(tn)− q(tn)− 1

2
σ2(tn, Sn)

]
∆t

+σ(tn, Sn)
√

∆tN1(0, 1) (4)

Simulating the stock price this way entails no discretization error and solve the
problem of generating negative index value.

4 Calibration

It can be demonstrated that supposing to have a continuous surface of implied
volatilities Σ(t, S), the surface of local volatility is complitely determined by
Dupire’s formula

σ2(t, S) =
Σ2 + 2Σt

[
∂Σ
∂t + (r(t)− q(t))S ∂Σ

∂S

](
1− yS

Σ
∂Σ
∂S

)2

+ tSΣ
[
∂Σ
∂S −

1
4 tSΣ

(
∂Σ
∂S

)2
+ S ∂2Σ

∂S2

] (5)

where for simplicity we suppressed the (t, S) dependency of Σ and where

y(t, S) = ln

(
S

S0

)
+

∫ t

0

(q(s)− r(s))ds (6)

Of course the main problem with this model is that the implied volatilitly
surface Σ is not given, but the market provides us only an implied volatility
matrix.

The first step is then to decide how to interpolate the implied volatility
matrix to give a smooth surface on which calculate derivatives that appear in
formula (5). This can be done in several ways, and the current implementation
of the dupire plug-ins fits a quadratic model.
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