
Dai Singleton Model
Version 1.0

1 Introduction

This plug-in implements Dai-Singleton affine term structure models with 1,2,3
factors and also their extensions known as essentially affine models. For gen-
eral references on affine models see [1] for completely affine models and [2] for
essentially affine ones.

2 How to use the plug-in

• In the Fairmat user interface when you create a new stochastic process
you will find the additional option “Dai-Singleton interest rate model”.

• The stochastic process is defined by the parameters shown in table below.

Description
Fairmat Documentation
notation notation

N × 1 vector Y0 Y0
scalar delta0 δ0
N × 1 vector deltaY δY
N ×N matrix K K
N × 1 vector theta θ
N ×N matrix sigma Σ
N × 1 vector alpha α
N ×N matrix beta B
N × 1 vector lambda1 λ1
N ×N matrix lambda2 λ2
N ×N matrix I I−

3 Implementation Details

3.1 Introduction on one factor affine term structure mod-
els

A short rate model is said to posses an affine term structure if the price of a
bond starting at time t and ending at time T is given by

p(t, T ) = eA(t,T )−B(t,T )r(t). (1)
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3 Implementation Details

Assume that the short rate dynamic is

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dW (t). (2)

It can be demonstrated (see [3]) that if µ and σ are of the form{
µ(t, r) = α(t)r + β(t)

σ(t, r) =
√
γ(t)r + δ(t)

(3)

then the model has an affine term structure where the functions A and B solve
the system 

∂tA(t, T ) = β(t)B(t, T )− 1
2δ(t)B

2(t, T )
A(T, T ) = 0
∂tB(t, T ) = −α(t)B(t, T ) + 1

2γ(t)B2(t, T )− 1
B(T, T ) = 0.

(4)

In general not all the affine term structure models have a form given by
formula (3) but it can be shown that if we make the additional request of having
time independent µ and σ, then that’s the only possible form for an affine term
structure model.

3.2 Dai-Singleton completely affine models

An N -factor affine term structure model is obtained supposing that

1. the short rate is an affine combination ofN unobserved variables Y1, . . . , YN

r(t) = δ0 +

N∑
i=1

(δY )iYi(t) = δ0 + δ′Y Y (t) (5)

where δY and Y (t) are N × 1 vectors

2. the dynamic of Y (t) under the risk-neutral measure Q is given by

dY (t) = K̃(θ̃ − Y (t))dt+ Σ
√
S(Y (t))dW̃ (t) (6)

where

S(Y (t)) is a diagonal matrix with Sii(Y (t)) = αi + β′iY (t)

αi are scalars

βi are N × 1 vectors

W̃ (t) is an N -dimensional independent Wiener process under Q

K̃,Σ are N ×N matrices

θ̃ is an N × 1 vector.
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3 Implementation Details

Assuming that the market prices of risk are given by

Λ(Y (t)) =
√
S(Y (t))λ (7)

where λ is an N × 1 vector, the Y dynamic in the physical measure has got the
same form as in the risk-neutral measure

dY (t) = K(θ − Y (t))dt+ Σ
√
S(Y (t))dW (t) (8)

where this time W (t) is an N -dimensional independent Wiener process under
P and K, θ are given by

K = K̃ − ΣΦ (9)

θ = K−1(K̃θ̃ + Σψ) (10)

with matrix Φ and vector ψ defined by

Φ =

 λ1β
′
i

...
λNβ

′
N

 ψ =

 λ1α1

...
λNαN

 . (11)

Calling α the column vector with components αi and B the matrix with
columns βi, a Dai-Singleton model is defined by the set of parameters

{δ0, δY ,K, θ,Σ, α,B, λ}. (12)

As explained in [1] this kind of models posses a group of symmetry such that
applying to a set of parameters some transformations you obtain another set
witch is equivalent to the starting one meaning that the short rate dynamic will
be the same in the two cases. So different parameters can represent equivalent
models.

3.3 Duffee essentially affine models

In the article [2] Duffee showed how it is possible to extend completely affine
models. Starting from the same risk-neutral dynamic as formula (6), he assumes
that the market prices of risk are given by

Λ(Y (t)) =
√
S(Y (t))λ1 +

√
S−(Y (t))λ2Y (t) (13)

where λ1 is an N ×1 vector, λ2 is a N ×N matrix and S−(Y (t)) is the diagonal
matrix defined as

S−ii (Y (t)) =

{
S−1ii (Y (t)) = 1/(αi + β′iY (t)) if inf {αi + β′iY (t)} > 0
0 otherwise.

(14)

In practice if Sii cannot reach 0, S−ii is its reciprocal, otherwise S−ii = 0. Note
that with λ2 = 0 we retrieve the completely affine case.

This definition implies that
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3 Implementation Details

• both the risk neutral and the real world dynamics share the same form
and are of the same kind as in the completely affine case

• when Sii(Y (t)) approaches zero Λ does not go to infinity

• the market prices of risk can change more independently from volatility

• in affine models the instantaneous expected excess return holding a bond
between time t and t+ τ is given by

e(t, τ) = −B(τ)′Σ
√
S(Y (t))Λ(Y (t)). (15)

In completely affine models the components of Λ cannot change sign at
different t and so given a certain maturity (i.e. fixing the value of τ) also
excess returns cannot change sign. Essentially affine models overcome this
limitation.

The real world dynamic remains the same but now K is given by

K = K̃ − ΣΦ− ΣI−λ2 (16)

where I− is the diagonal matrix defined by

I−ii = 1 if S−ii (Y (t)) 6= 0 (17)

I−ii = 0 if S−ii (Y (t)) = 0. (18)

An essentially affine model is determined by the set of parameters

{δ0, δY ,K, θ,Σ, α,B, λ1, λ2, I−} (19)

and reduces to the completely affine case if λ2 = 0N×N .

3.4 Admissibility of the model

Depending on B it’s possible that Sii(t) becomes negative for some i at some t.
Models for witch this cannot happen are called admissible.

With B = 0N×N we have gaussian models that are all admissible. On the
other hand with B 6= 0N×N the drift and diffusion matrices K, θ,Σ,B have to
satisfy some constrains to assure admissibility. In the article [1] is explained
that the higher the rank of B, the more stringent are these constraints and how
it is possible to build admissible models.

3.5 Solution to the SDE, expected value and variance

The stochastic differential equation 8 can be solved so that if we know the
process at time t1 the process at time t2 is given by

Y (t2) = θ + e−K(t2−t1) [Y (t1)− θ] +

∫ t2

t1

e−K(t2−u)Σ
√
S(Y (u))dW (u). (20)
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From this formula it’s possible to obtain the conditional expected value and
conditional variance for Y (t2)

E[Y (t2)|Y (t1)] = θ + e−K(t2−t1) [Y (t1)− θ] (21)

Var[Y (t2)|Y (t1)] =

∫ t2

t1

e−K(t2−u)ΣS(E[Y (u)])S(E[Y (u)])′Σ′e−K
′(t2−u)du. (22)

3.6 Bond Price formula

Duffie and Kan demonstrated (see [4]) that in an N -factor affine term structure
model the price of a zero coupon bond

P (t, t+ τ) = EQt
[
e−

∫ t+τ
t

r(u)du
]

(23)

is given by
P (t, t+ τ) = eA(τ)−B(τ)′Y (t) (24)

where the functions A and B satisfy the ordinary differential equation

∂τA(τ) = −θ̃′K̃ ′B(τ) +
1

2

N∑
i=1

[Σ′B(τ)]2iαi − δ0 (25)

∂τB(τ) = −K̃ ′B(τ) +
1

2

N∑
i=1

[Σ′B(τ)]2iβi − δY (26)

with the initial conditions A(0) = 0, B(0) = 0N×1.
In the DaiSingleton plug-in these differential equations are numerically solved

using a fourth-order Runge-Kutta method (for reference see [5]).
Given formula (24) bond’s yield are affine in the unobserved factors

R(t, t+ τ) = −1

τ
log [P (t, t+ τ)] =

1

τ
[B(τ)′Y (t)−A(τ)] . (27)

3.7 Simulation and discretization scheme

If one tries to simulate an affine term structure model through straight Euler-
Maruyama method he obtains that the Yn+1 step is created following the formula

Yn+1 = Yn +K(θ − Yn))∆t+ Σ
√
S(Y (tn))

√
∆tN(0, 1) (28)

where ∆t = tn+1− tn and N(0, 1) represents a realization of a standard normal
random variable. Even if the model is admissible and then from a theoretical
point of view the process cannot reach negative values for S(Y (t)), its discretized
version can generate negative S(Y (t)) values.

This forces to choose a different discretization scheme. Fairmat implements
the Deelstra-Delbaen discretization scheme, and then the simulation is done
through

Yn+1 = Yn +K(θ − Yn))∆t+ Σ
√

max{S(Y (tn)), 0}
√

∆tN(0, 1). (29)
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5 Calibration

Indeed negative S(Y (t)) can be generated but in this case the diffusion term
is suppressed letting the drift term take the process toward values for witch
S(Y (t)) is positive.

4 Inflation modelling

To price inflation indexed derivatives it’s possible to use a particular Dai-
Singleton two factor model in which Y1 e Y2 are respectively the instantaneous
real rate and the instantaneous inflation rate. To better distinguish the two
components we will indicate them respectively with φ and π. Their sum gives
the nominal rate so we can set δY equal to unity vector and δ0 = 0 to have

r(t) = Y1(t) + Y2(t) = φ(t) + π(t). (30)

Other parameters are set as

• αi = 1

• βi are all null vectors

• K =

[
k11 0
k21 k22

]

• Σ =

[
σ11 0
σ21 σ22

]
• θ is a 2× 1-vector

With this choice of parameters the differential equation (25) and (26) can be
analytically solved and the bond function is given by

P (t, t+ τ) = eA(τ)−Bφ(τ)φ(t)−Bπ(τ)π(t) (31)

5 Calibration

The plug-in can calibrate the model in two ways, one in which the process com-
ponents represent principal components of the zero rate curve and the other in
which the process components are the instantaneous real rate and instantaneous
inflation rate as in section 4.

5.1 Principal component analysis calibration

In this calibration case the model is a two factor Gaussian model where Y1 and
Y2 represents the first two principal components obtained through PCA over an
historical series of zero rate curve.
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Calibration is carried out in two steps. The first one consists in finding
the parameter subset which better reflects the descriptive statistics of principal
components. In the second step, assuming a Gaussian distribution for the noise,
the historical series of latent components can be inferred through a Kalman
filter analysis and then the remaining parameters can be fixed using maximum
likelihood estimation applied to forecast errors on the historical series.

5.2 Inflation calibration

In this calibration case the model is a two factor Gaussian model where Y1 = φ
and Y2 = π components represent respectively the instantaneous real rate and
the instantaneous inflation rate as in section 4.

Calibration is based on historical series of nominal zero rate curve and his-
torical series of inflation term structure calculated from quoted zero coupon
inflation indexed swap (ZCIIS).

We will indicate with Υ the nominal interest rate matrix and with Π the
inflation rate matrix, with rows representing rate maturities and columns rep-
resenting different observation.

Using this notation we can write the following system
Υ(τ) = −A(τ)

τ
+
Bφ(τ)

τ
φ+

Bπ(τ)

τ
π + ε(τ)

Π(τ) = −Aπ(τ)

τ
+
Bπ(τ)

τ
π + u(τ)

(32)

and assume that

E
[
ε(t)ε′(s)

]
=

{
σ2
y t = s

0 t 6= s

E
[
u(t)u′(s)

]
=

{
σ2
x t = s

0 t 6= s

E
[
ε(t)u′(s)

]
= 0 ∀t, s .

Through equations (32) and assuming Gaussian noise distribution latent vari-
ables can be calculated using Kalman filter analysis. Then process parameters
can be inferred using maximum likelihood estimation applied to forecast errors
on historical series.
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