
Lattice (Binomial Trees)
Version 1.2

1 Introduction

This plug-in implements different binomial trees approximations for pricing con-
tingent claims and allows Fairmat to use some of the most popular binomial trees
approximations to price a subset of the models which is possible to use within
Fairmat.

2 How to use the plug-in

When the Lattice plug-in is installed, the following options appear in the Fair-
mat user interface:

• Under the Settings menu, a new item which will allow you to choose
between Simulation and Lattice appears;

• Under the Settings menu, the “Numerical Settings” dialog window (See
Figure 1) contains a new tab which allows to specify the lattice specific pa-
rameters: between them, the “approximation methods” which will be used
to build the approximation of the dynamics. The supported discretization
schemes are:

– “CRR/BEG”;

– “NEK (Ekval)”;

– “GLT”;

– “AGLT”.

• A new process called custom dynamic will be available on the stochastic
processes list. Custom dynamic allows you to specify the outcomes of your
stochastic process, and it is very useful when no statistical information is
available.
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Figure 1: Binomial Trees Numerical Settings Form

2.1 How to use the custom dynamic

Note: Custom dynamic is experimental and may be subject to changes!
The Custom dynamic stochastic process generates a binomail trees where the
trees levels are determined by the user. This feature allows you to specify the
outcomes of your stochastic process, and it is very useful when no statistical in-
formation is available. The following limitation arises in projects using custom
dynamic:

• The actual implementation overrides the number of time steps and as-
sumes that time step are equally distributed.

• If in a project are present more custom dynamics they must have the same
number of columns.

3 Implementation details

In the binomial lattice approaches the basic assumption is that the value of each
source of uncertainty can move up or down by a given amount in a small time
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Figure 2: Example of Lattice editing with custom dynamic.

period. By combining this simple dynamic for all the sources of uncertainty
we obtain a multivariate binomial tree. Then we can evaluate the project and
its embedded options by backward dynamic programming at every node of the
binomial tree. Fairmatr enables us to evaluate Real Options with a binomial
lattice approach that allows however many underlying assets you want; the
limitations are only in computing time and in memory required to calculate the
results. As you see in the previous section, in the current version of Fairmatr

four possible lattice schemes can be used to evaluate options:

• “CRR/BEG”: the standard Cox-Ross-Rubinstein scheme [1] (extended to
multidimensional framework by Boyle-Evnine-Gibbs [2]);

• “NEK (Ekval)” the Ekvall’s approach [3].

• “GLT”/“AGLT”: a log-transformed scheme (proposed by Trigeorgis [4])
and extended to a multidimensional setting by Gamba-Trigeorgis [5].

Additionally those methods can be improved by using the Richardson Extrap-
olation.

In the following subsections, the Cox-Ross-Rubistein and the Log-Transformed
scheme are explained with more detail.

3.1 Cox-Ross-Rubistein scheme

Each underlying asset follows a stationary multiplicative binomial process over
discrete periods described by:

where the state variable at the beginning of a given period, S, may increase
(by a multiplicative factor u) with probability q to uS or decrease with com-
plementary probability (1 − q) to dS at the end of a period ∆t. Thus u and
d represent the (continuously compounded or logarithmic) rate of return if the
underlying asset moves up or down, respectively, with d = 1/u.

Letting r denote the riskless interest rate over we require u > (1 + r) > d.
If these inequalities did not hold, there would be profitable riskless arbitrage
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opportunities involving only the asset and riskless borrowing and lending.

We must adjust the interval-dependent variables r, u, d in such a way that
we obtain empirically realistic results as ∆t becomes smaller, or, equivalently,
as n = (t/∆t) → ∞, where t is a fixed calendar time (for instance, the matu-
rity of an option) and n is the number of periods of length ∆t prior to the expiry.

We want to approximate the continuous-time Geometric Brownian Motion
with the discrete process. If we take:

u = eσ
√

∆t d = e−σ
√

∆t

q =
1

2

(
1 +

g − σ2/2

σ

√
∆t
)

the discrete process has the same distribution of the continuous process when
n→∞ (means and variances coincide in the limit).

For the mean-reverting processes:

dV (t) = η(V − V (t))dt+ σdz

the parameters are:

u = σ
√

∆t d = −σ
√

∆t

p =


1
2

(
1 +

η
(
V−V (t)

)
σ

√
∆t
)

p ∈]0, 1[

0 p ≤ 0
1 p ≥ 1.

For the other kind of mean-reverting processes (log-MR):
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dV (t) = ηV (t)(V − V (t))dt+ σV (t)dz

the parameters are:

u = eσ
√

∆t d = e−σ
√

∆t

p =


1
2

(
1 +

η
(
V−V (t)

)
− 1

2σ
2

σ

√
∆t
)

p ∈]0, 1[

0 p ≤ 0
1 p ≥ 1.

For the Itô processes, the parameters that ensure the coincidence between
limiting means and variances of continuous and discrete process are:

u = eb(V (t),t)
√

∆t

q =
1

2

(
1 +

a(V (t), t)

b(V (t), t)

√
∆t
)

To compute the value of an option depending on the underlying asset we use
Dynamic Programming, a very general tool for dynamic optimization which
is particularly useful when considering uncertainty. It breaks a whole sequence
of decisions into just two components: the immediate decision, and a valuation
function that incorporates the consequences of all subsequent decisions, starting
with the position that results from the immediate decision.

The idea behind this decomposition is formally stated in Bellman’s Princi-
ple of Optimality: an optimal policy has the property that, whatever the initial
action, the remaining choices constitute an optimal policy with respect to the
subproblem starting at the state that results from the initial actions.

The result of this decomposition is called the Bellman equation.
Suppose the current date is t and the state is xt. Let us denote by Ft(xt)

the outcome (the expected net present value of all the firm’s cash flows) when
the firm makes all decisions optimally from this point onwards.

When the firm chooses the control variables ut, it gets an immediate profit
flows πt(xt, ut). At the next period (t + 1), the state will be xt+1. Optimal
decisions thereafter will yield Ft+1(xt+1). This is random from the perspective
of period t, so we must take its expected value. That is what we call continuation
value and it has to be discounted back to period t.

The firm will choose ut to maximize the sum of the immediate profit and
the continuation value and the result will be just the value Ft(xt). So, at any
time t, the Bellman equation is:

Ft(xt) = max
ut

{
πt(xt, ut) +

1

1 + ρ
Et[Ft+1(xt+1)]

}
.
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If the planning horizon is finite, the very last decision at its end has nothing
following it, and can therefore be found using standard optimization methods.
This solution then provides the valuation function appropriate to the penulti-
mate decision. That, in turn, serves for the decision two stages from the end,
and so on. In this way we can work backwards all the way to the initial condition.

Let us consider a simple example: an option to invest in a project.
The data of the problem are:

V = 100 Current value of the real asset (the project)
I = 160 Cost of the investment
T = 3 Time to option maturity
u = 1.42 Growth factor if the underlying asset moves up
d = 1/u Decrease factor if the underlying asset moves down
p = 0.37 Probability of an up movement
r = 6% Continuously compounded yearly interest rate
δ = 9% Dividend yield of the underlying asset
σ = 35% volatility of the underlying asset
∆t = 1 Length of each time step

The stationary multiplicative binomial process over discrete periods of the
underlying asset is:

100 142 201 286
70 100 142

50 70
35

where: {
Vt × u
Vt × d

The value of the project is computed working backward, according to the
Dynamic Programming approach. At the last relevant decision point, T , we can
make the best choices to invest and thereby find the continuation value. The
value of the investment opportunity is:

GT = max
{
Vt − I, 0

}
Then at the decision point before that one and for each value of the underly-

ing asset, we know the expected continuation value and therefore can optimize
the current choice. The Bellman equation for a generic t < T is:
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Gt = max
{
Vt − I,

1

1 + r
Et[Ft+1]

}
that is the maximum between the payoff and the continuation value.

So the value of the option at each time step and also at t = 0 is:

5 15 44 126
0 0 0

0 0
0

where:

G(VT ) = max
{
VT − I, 0

}
,

G(Vt) = max
{
Vt − I,

pG(Vtu) + (1− p)G(Vtd)

1 + r

}
.

3.2 Log-Transformed scheme

In the financial literature, several extensions of the CRR lattice approach pre-
sented above for Geometric Brownian Motions have been proposed. Boyle, Ev-
nine and Gibbs (BEG) provide a straightforward extension of the Cox, Ross and
Rubinstein approach to several underlying assets whose dynamics are GBM. As
BEG acknowledge, their scheme provides positive probability if the size of the
time step is small (i.e., if the number of steps is large enough). Unfortunately,
if there are a number of underlying assets, the lattice will quickly become too
complex if there are a large number of steps. So it may happen that for some
values of the parameters (if the volatility or the number of steps used are small
with respect to the risk-adjusted drift), the probabilities of the jumps in BEG’s
scheme (which is based on CRR’s choice of probability) are negative, giving in-
accurate estimates of the value of the option and making the method unstable.

A very important feature of the Cox-Ross-Rubinstein method, as illustrated
above, is that it makes pedagogically clear the relationship between the no-
arbitrage (or risk neutral valuation) argument and the hedging argument. Hav-
ing said that, it does not need to be also the best approach from a numerical
viewpoint. Several other approaches have been proposed.

Among other lattice approximations, the log-transformed approximation has
been proposed by Trigeorgis (1991) to overcome some of the above flaws pre-
sented by the CRR approach.

This method can be applied only in the case of Geometric Brow-
nian Motion.
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Let’s first consider the uni-dimensional case.

The standard Brownian Motion:

dYt =
(
α− σ2

2

)
dt+ σdZt,

Y0 = y = log x,

where
dxt = αxtdt+ σxtdZt,

is approximated by a discrete-time process

Ỹt = Ỹj−1 + hUj Ỹ0 = y

j = 1, 2, . . . , n with parameters:

µ =
m

σ2
=

α

σ2
− 1

2

k = g = σ
√

∆t

h =
√
k2 + (k2µ)2

p =
1

2

(
1 +

k2µ

h

)
.

Note that the up step here is u = eh and d = 1/u. A remarkable feature of
this method is that, since h ≥ |k2µ|, then 0 ≤ p ≤ 1 with no need of external
constraints on the parameters to make the algorithm stable. Thus a key feature
of the log-transformed approach is that it allows for unconditional stability. This
is so because the time unit is k instead of ∆t; i.e., time is measured in units of
variance. This feature makes the log-transformed approximation consistent at
each step n (not just in the limit as n→∞ as in CRR):

E[∆Ỹt] = m∆t V ar[∆Ỹt] = σ2∆t.

For this reason, unlike the CRR approach, it does not explode for small
volatility and/or number of time steps.

The efficiency of the log-transformed method proves to be even more impor-
tant when evaluating options with many underlying assets because memory and
computational constraints do not allow for a very large number of steps.

In the multidimensional case, the correlation plays an important role in
the ability to maintain a positive probability in all states (because of the presence
of the correlation, the straightforward extension of Trigeorgis’ log-transformed
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binomial approach to several underlying assets suffers with the same drawbacks
as in CRR (and BEG) scheme: the probability distribution, for some values of
the parameters, can have negative values).

Consider N correlated assets whose price dynamics Xi are described by the
following geometric Brownian motions (under the Martingale probability):

dXi

Xi
= αidt+ σidZi

E[dZidZj ] = ρijdt

i = 1, 2, . . . , N where αi is the risk-adjusted drift of the i-th asset price and
i 6= j.

Given a derivative security with maturity T and price F whose payoff de-
pends on the underlying assets prices, we want to estimate the risk-neutral price
of the derivative security. Following the usual Black and Scholes argument, the
valuation p.d.e. for F in the multidimensional case is:

1

2

N∑
i=1

N∑
j=1

ρijσiσjXiXj
∂2F

∂xi∂xj
+

N∑
i=1

αiXi
∂F

∂xi
+
∂F

∂t
− rF = 0

with appropriate boundary conditions.

Since in general an analytic solution to this p.d.e. (for given boundary con-
ditions) does not exist, we can obtain a numerical solution by approximating
the continuous dynamics with a binomial lattice approach.

To illustrate the process more simply, we first show the two-dimensional
case, N = 2. First, we take the log of the asset values: Yi = logXi, i = 1, 2.
The dynamics of Yi are:

dYi =
(
αi −

1

2
σ2
i

)
dt+ σidZi

with i = 1, 2.

Given the time interval [0, T ] specified by the maturity of the option, we
consider n subintervals of width ∆t = T/n. We approximate the continuous-
time process with the discrete-time one

(Ŷ1, Ŷ2).

The approximation criterion is the following: the discrete time process ap-
proximates the diffusion if the characteristic function of the first one approxi-
mates the characteristic function of the second one. This is equivalent to match-
ing the first two moments of the distributions. The discrete process is:
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Ŷi(t) = Ŷi(t− 1) + hiUi(t),

i = 1, 2 e t = 1, . . . , n where is a bi-variate i.i.d. binomial random variable:

(U1, U2) =


(1, 1) p1

(1,−1) p2

(−1, 1) p3

(−1,−1) p4

and
4∑
i=1

pi = 1

Let:

µi =
αi
σ2
i

− 1

2

ki = σi
√

∆t

hi =
√
k2
i + (k2

i µi)
2

Rij = kikj/(hihj)

Mi = k2
i µi/hi

i = 1, 2. Note that ui = ehi and di = 1/ui. Moreover, let

p1 = puu = (1 + (Rρ+M1M2) +M1 +M2)/4

p2 = pud = (1− (Rρ+M1M2) +M1 −M2)/4

p3 = pdu = (1− (Rρ+M1M2)−M1 +M2)/4

p4 = pdd = (1 + (Rρ+M1M2)−M1 −M2)/4

where ρ = ρ12 and R = R12. With these parameters, the first moments
of the increment of the discrete-time process match the first moments of the
increment of the continuous-time process for any given time step ∆t:

E[∆Ŷi] = k2
i µi = E[∆Y ] =

(
αi −

1

2
σi

)
∆t

V ar[∆Ŷi] = k2
i = V ar[∆Y ] = σ2

i∆t
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Cov[∆Ŷ1,∆Ŷ2] = ρ12k1k2 = Cov[∆Y1,∆Y2] = ρ12σ1σ2∆t.

Hence, the approximation of the bi-variate geometric Brownian motion:

dXi

Xi
= αidt+ σidZi

i = 1, 2. Is given by the process

(X̂1, X̂2)

such that:

X̂i(t) = X̂i(t− 1)ehiUi

t = 1, 2, . . . , n, i = 1, 2.

If the asset returns are uncorrelated, then the log-transformed probabil-
ity is always strictly positive and the multidimensional extension of the log-
transformed approximation would have the same features as in the case with
one underlying asset.

We can change the co-ordinate system in order to have a set of uncorrelated
diffusions, then we can evaluate an option written on multiple assets while pre-
serving all the positive features of the log-transformed approach.

We change the basis ofRN , the market space generated by theN -dimensional
diffusion of the asset returns (the symbol T denotes transposition), so that the
price of the derivative security is dependent on an N -dimensional diffusion ob-
tained by a change of basis such that its components yi are uncorrelated. Note
that if we change the basis of the market space the risk structure of the market
does not change and hence we can employ risk-neutral valuation. We have to
change the payoff function accordingly: denoting by Π(Y ) the payoff of the con-
tingent claim, and W the matrix representing the change of basis, the expression
of the payoff with respect to the new basis is:

Π̂(y) = Π(Wy).

The dynamics of the returns y can then be approximated by a suitable
log-transformed binomial lattice that overcomes the previous problems. The
probabilities of the improved log-transformed approximation are positive and
lower that one for any parameter values.

In particular this method maintains the unconditional stability feature of
the approach presented in the one-dimensional case by Trigeorgis (for details,
see Gamba-Trigeorgis (2001)).
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The economic rationale of the approach based on a change of basis is the
following. We want to price the contingent claim with payoff Π(Y ), where Y is
the return of the assets traded in the market, in a risk neutral setting. If the
financial market is complete (that is, if the number of non-perfectly correlated
traded assets is equal to the number of the sources of uncertainty), we can
generate N portfolios with the original assets: we denote

wTi = (wi1, . . . , wiN )

the i-th portfolio, i = 1, . . . , N , where wij is the position in the j-th asset in
portfolio i.

We can see these portfolios as new synthetic assets spanning the (same)
market space. Any contingent claim which is redundant with respect to the
original assets is redundant also with respect to these synthetic assets. The
N portfolios we generate are selected so as to have uncorrelated returns. The
contingent claim to be priced is dependent on the returns of the synthetic assets
and is denoted by

Π̂(y).

Since the risk structure of the market is unchanged (the market spanned
by the synthetic assets is the same as the original one: the only thing that
changes is the representation of returns), we can price the claim according to a
risk-neutral approach with respect to a Martingale probability derived by the
original one by a simple change of basis.

To illustrate this multidimensional binomial technique, we present the two-
dimensional case.

Suppose:

dYi = αidt+ σidZi

i = 1, 2 where ρ = ρ12 and

Σ =

(
1 ρ
ρ 1

)
and

b =

(
σ1 0
0 σ2

)
.

Since

Ω =

(
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

)
we get Λ = (λi), a two-dimensional diagonal matrix, where
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λ1,2 =
1

2

(
σ2

1 + σ2
2 ∓

√
σ4

1 + 2(1− 2ρ2)σ2
1σ

2
2 + σ4

2

)
and

W =

( (
λ1

σ1σ2
− σ2

σ1

)
/(ρc1)

(
λ2

σ1σ2
− σ2

σ1

)
/(ρc2)

1/c1 1/c2

)
where

ci =

√
1 +

(λi − σ2
2)2

ρ2σ2
1σ

2
2

The processes of the returns of the synthetic securities are

dyi = Aidt+Bi1bdZ1 +Bi2dZ2

i = 1, 2 where B = (Bii) = WT b and A = WTa. We approximate the
distribution of y with a discrete distribution: given the time interval [0, T ], we
consider n subintervals of width ∆t = T/n. The discrete process is

(ỹ1, ỹ2)

with dynamics

ỹi(t) = ỹi(t− 1) + liUi(t)

i = 1, 2 and t = 1, . . . , n where is a bi-variate i.i.d. binomial random variable
with distribution:

(U1, U2) =


(1, 1) p1

(1,−1) p2

(−1, 1) p3

(−1,−1) p4

By assigning the parameters

κi = Ai∆t

li =
√
λi∆t+ κ2

i

Li = κi/li

i = 1, 2 and probability

p(s) =
1

4
(1 + δ12(s)L1L2 + δ1(s)L1 + δ2(s)L2)

s = 1, . . . , 4, for the discrete time process, we have the following:

E[∆ỹi] = κi = Ai∆t
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V ar[∆ỹi] = l2i − κ2
i = λi∆t

Cov[∆ỹ1∆ỹ2] = 0

Hence, this discrete process is consistent with the continuous process for any
time step (not just in the limit).

The above case can be generalized to the N - dimensional case.
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3.3 Richardson Extrapolation

Many methods of approximation depend on a positive parameter, say, h, which
controls the accuracy of the method. As h → 0, the approximations typically
converge to the exact solution. In practice, one usually computes several ap-
proximations to a solution, corresponding to different values of the parameter h.
It is then natural to try “extrapolating to the limit h = 0”, that is constructing
a linear combination of these approximations that is more accurate than either
of them.

We consider an option with maturity t = 1 and we used a 4-point Richard-
son extrapolation based on a 3-dimensional binomial lattice with, for example,
n = 12, 24, 36, and 48 time steps. In this way we can fit option values as a cubic
function of h = 1/n. By extrapolating this function, we obtain an approxima-
tion to the value corresponding to n =∞, that is h = 0.

In this particular case, the four different values of the parameter h are:

h1 = 1/12 h2 = 1/24 h3 = 1/36 h4 = 1/48

We develop four Taylor’s expansions around the four values of h:

f(h1) = f(0) + f ′(0)h1 +
1

2
f ′′(0)h2

1 +
1

6
f ′′′(0)h3

1

f(h2) = f(0) + f ′(0)h2 +
1

2
f ′′(0)h2

2 +
1

6
f ′′′(0)h3

2

f(h3) = f(0) + f ′(0)h3 +
1

2
f ′′(0)h2

3 +
1

6
f ′′′(0)h3

3

f(h4) = f(0) + f ′(0)h4 +
1

2
f ′′(0)h2

4 +
1

6
f ′′′(0)h3

4

In matrix notation, we have:

b = Ax

where:

b =


f(h1)
f(h2)
f(h3)
f(h4)



A =


1 h1 h2

1 h3
1

1 h2 h2
2 h3

2

1 h3 h2
3 h3

3

1 h4 h2
4 h3

4



15



3 Implementation details

x =


f(0)
f ′(0)
f ′′(0)
f ′′′(0)


The Richardson extrapolated value is f(0). We solve the problem by com-

puting the inverse of matrix A and then considering

x = A−1b

that is, f(0) is obtained by multiplying the first row of the inverse matrix of
A by the column vector b.
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