Template | 🕻 fairmat

Interest Rate Floor

1 Introduction

An Interest Rate *Floor* is (generally) an O.T.C. derivative contract based on a series of European interest rate put options. This interest rate sensitive instrument protects the floor buyer from losses resulting from a decrease in interest rates. The floor seller compensates the buyer with a payoff when the reference interest rate falls below the floor strike rate.

Interest Rate Floor	
Principal	100 bullet
Trade Date	23/03/2010
Effective Date	25/03/2010
Termination Date	25/03/2015
Payment Frequency	Quarterly
Payoff	
From Effective to Termination date	$\max(\ 2\% - EUR \ Euribor \ 3M; \ 0\% \)$
Conventions	
Reset dates	Advance, 2 days before
Day Count Fraction	Act/360 (Adjusted)

Table 1: Example of an Interest Rate Floor template.

2 Template implementation

This section describes the constants, symbols and functions we used for the implementation of the template:

Interest Rate Floor on Fairmat	
Principal	Ν
Trade Date	Trading date (simulation start date)
Effective Date	Contract initial date
Termination Date	$\mathbf{Pd}[\mathbf{end}]$
Payment Frequency	matRate-Year (exchange per year)
Payoff From 1 to length(@ Pd) max(lev	vStk*stk - levRate*matRate-Year Euribor; 0%)
Conventions	
Reset dates Day Count Fraction	Advance, rday days before Dur
Day Count Flaction	Du

Table 2: Example of Interest Rate Floor template described through Fairmat objects.

The variables of Interest Rate *Floor* template loaded on "*Parameters* \mathscr{E} *Functions*" can be classified into three categories:

N	pdu
100.00	25/06/2010
100.00	25/09/2010
100.00	25/12/2010
100.00	25/03/2011
100.00	25/06/2011
100.00	25/09/2011
100.00	25/12/2011
100.00	25/03/2012
100.00	25/06/2012
100.00	25/09/2012
100.00	25/12/2012
100.00	25/03/2013
100.00	25/06/2013
100.00	25/09/2013
100.00	25/12/2013
100.00	25/03/2014
100.00	25/06/2014
100.00	25/09/2014
100.00	25/12/2014
100.00	25/03/2015

Table 3: Input (Vectors) of Interest Rate Cap template loaded on "Parameters &Functions" Fairmat environment.

1. Contract specific parameters:

- N: principal, bullet or amortizing (see Table 3);
- **pdu**: payment date (unadjusted), used for auxiliary item **Pd** (see Table 3);
- **matRate**: time horizon of Floating rate expressed into year fraction;

- **levRate**: leverage on Floating rate;
- levStk: leverage on strike (stk) rate;
- **stk**: strike rate;
- **rday**: number of days before *Initial* (*Advance*) / *Ending* (*Arrears*) period;
- 2. Market data:
 - **zr**: *zero* rate (derived from *spot* rate);
- 3. Auxiliary and Instrumental variables: the following elements are other objects and functions that aren't input they are derived from or depend on Contract specific data or Market data inputs but they are useful for use within "Option Map" environment.
 - **Floorlet**: analytic function of a *floorlet* payoff;
 - **Pd**: date's vector transformation from **pdu** vector (see Table 3);
 - Rd: date's vector transformation from pdu vector (see Table 3) using rday constant;
 - **Dur**: date's vector difference transformation from **pdu** vector (see Table 3);

