Fairmat Extension Model

Version 1.5.0 Quickstart ﬂfalrmat

Contents
1 Introduction 3
2 Fairmat extension points 3
2.1 User Interface extension Points . . . . ... ... ... ... ... 4
2.2 Input/output extension points. . . . . . . ... ... ... ... )
2.3 Financial Modelling Extension Points . . . . . .. ... ... .. )
2.4 Misc Extension points . . . . . ... Lo oL 7
3 OpenCL support 8
3.1 Imterface IOpenCLCode . . . .. ... ... . ... ... ..... 8
3.1.1 Arguments . ... 9
312 Code. .. ... e 9
3.2 IsOpenCLUsable . . . .. .. ... . ... 9
4 Stochastic processes 9
4.1 Definition and Simulation . . . . . .. ... .00 9
4.1.1  Automatic Generation of required parameters . . . . . . . 9
4.1.2 Markov Simulator . . ... ... ... ... ... ... 10
4.1.3 TIPostSimulationTransformation . . . . . . .. ... .. .. 11
4.1.4 Markov Simulator Implementation Example . . . . . . .. 11
4.2 Stochastic Process Calibration . . .. .. ... ... ... .... 12
5 Case studies and examples 12
5.1 How to define new options blocks types using plug-ins . . . . . . 12
5.2 How to define new stochastic process dynamics dynamics using
plug-ins . . . .. 12
5.2.1 Stochastic processes simulation workflow . . . . . . . . .. 12
5.3 Application level variables . . . . . . .. ... ... .. ... ... 13
53.1 Examples . . . . . ... 13
5.4 Extensions defaults . . . . . .. ... Lo 0oL 13
5.5 Handling Plug-ins settings . . . . . ... .. ... ... ... . 14
5.5.1 Settings usage and coding example . . . . ... ... ... 15
5.6 Case study: A simple extension . . . . . . ... ... ... .... 15
5.7 Additional resources . . . . . ... ... 17

1 D00



Contents [‘!falrmat

6 Plug-ins writing tips 17

2 D00



2 Fairmat extension points ﬂfa"—mat

1 Introduction

This document shows how to use the extension points defined in the Fairmat
core in order to write plug-ins. Fairmat plug-ins use the Mono.Addins extension
model. For basic information on Mono.Addins see http://www.mono-project.
com/Mono . Addins. By using Mono.Addins, new Fairmat’s can be built by imple-
menting one or more of the extension points defined by Fairmat that we have
listed below. Plug-ins can use all the objects and classes defined in the Fairmat
core: for details see the class documentation http://www.fairmat.com/software/
DVPL.web/ .

2 Fairmat extension points

At the moment Fairmat can be extended on the points listed below. The fol-
lowing interfaces belongs to the name space DVPLI and are defined in assembly
DVPLI.I. In order to have more information and details about the interfaces,
browse the classes documentation.

New extensions available in Fairmat 1.5.X:

® 7’ /Fairmat/Shortcut” interface IShortcut

Allows users to provide a shortcut definition separated from the main class
providing a menu shown functionality.

New extensions available in Fairmat 1.3.X:
® 7 /Fairmat/ProjectTemplate” interface IProjectTemplate
Allows users to define custom project templates
New extensions available in Fairmat 1.1.X:
® 7 /Fairmat/ProjectTemplate” interface IProjectTemplate
Allows users to define custom project templates

® 7 /Fairmat/ContractMetric” interface IContractMetric

Allows users to define custom objectives on the project: those metrics can
be used by the Fairmat Optimizer (available in Fairmat Professional)

® 7 /Fairmat/RandomVariableOperation” interface IObjectOperation

Populates the Random Variables contextual menu. It can be used to
modifies properties or execute operations on random variables.

3 CIOE)


http://www.mono-project.com/Mono.Addins
http://www.mono-project.com/Mono.Addins
http://www.fairmat.com/software/DVPL.web/
http://www.fairmat.com/software/DVPL.web/

2 Fairmat extension points ﬂfalrmat

2.1

User Interface extension Points

? /Fairmat /ProcessTypeChoice” interface \ls{IEditableChoice}

Provides to the Fairmat user interface an option for creating a new stochas-
tic process.

An example of this interface can be found at https://github.com/fairmat /-
InterestRatesModels/blob/master/HullAnd WhiteOneFactor/HW1Choice.cs

? /Fairmat /SymbolChoice” interface IEditableChoice

Provides to the Fairmat user interface an choice for creating a user symbol
(e.g. a constant).

An example of this interface can be found at https://github.com/fairmat /-
ModelingTools/blob/master /PFunction2D /PFunction2DSymbolChoice.cs

? /Fairmat /DataSourceChoice” interface IEditableChoice

Provides to the Fairmat user interface an option for creating a new data
source.

? /Fairmat /ExternalTool” interface IExternalTool

Extends Fairmat’s tools menu by describing a functionality available into
the Fairmat workspace independently if a document is active or not.

” /Fairmat /DocumentToolUI” interface IDocumentToolUI

Extends Fairmat’s tools menu by describing an operation performed on
the entire document. It also handles the user interface and the operation
itself.

? /Fairmat /CorrelationMatrixToolUI” interface IToolUI

Extends Fairmat’s tools menu by describing an operation performed on
the correlation matrix. It also handles the user interface and the operation
itself.

? /Fairmat /SymbolToolUI” interface ItoolUI (optionally
IProvider)

Defines the contextual menu for the objects in the symbol lists.

An example of this interface can be found at https://github.com/fairmat /-
ModelingTools/blob/master /DatesGenerator /DatesGeneratorContextItem.cs

” /Fairmat/OptionToolUI” interface IOptionToolUI

This interface extends Fairmat’s options contextual menu by defining op-
eration on a given option map element.

4 D00


https://github.com/fairmat/InterestRatesModels/blob/master/HullAndWhiteOneFactor/HW1Choice.cs
https://github.com/fairmat/InterestRatesModels/blob/master/HullAndWhiteOneFactor/HW1Choice.cs
https://github.com/fairmat/ModelingTools/blob/master/PFunction2D/PFunction2DSymbolChoice.cs
https://github.com/fairmat/ModelingTools/blob/master/PFunction2D/PFunction2DSymbolChoice.cs
https://github.com/fairmat/ModelingTools/blob/master/DatesGenerator/DatesGeneratorContextItem.cs
https://github.com/fairmat/ModelingTools/blob/master/DatesGenerator/DatesGeneratorContextItem.cs

2 Fairmat extension points ﬂfa"—mat

2.2

2.3

7 /Fairmat/Editor” interface IEditor

Defines a User interface editor for a given object.

An example of this interface can be found at https://github.com/fairmat /-
ModelingTools/blob/master /DatesGenerator/DateSequenceForm.cs

” /Fairmat /Desktop/TopToolStrip” interface IToolStrip

Defines a tool-strip to be added in top-toolstrip panel (Desktop Version)

? /Fairmat /Desktop/OptionMapToolStrip” interface IToolStrip

Defines a tool-strip to be added in top-tool-strip panel (Desktop Version)
and will be activated only when the option map is active.

? /Fairmat /Desktop/OptionMapDrawable” interface
IOptionMapDrawable

Defines an object which contains information about how to visualize a
logic option map’s object when rendering the option map.
Input/output extension points

7 /Fairmat/DataSourceReference” interface IDataSourceReference

Represents a reference to a generic data source: the data source can be
connected to a given object of a Fairmat project. This object push data
withing a Fairmat model.

” /Fairmat /NamedDataSourceReference” interface
IDataSourceReference

Represents a reference to a generic data source: the data source can be
connected to a given object of a Fairmat project. This object can be
referred within a Fairmat expressions.

? /Fairmat /MarketDataProvider” interface IMarketDataProvider

Represents a reference to objects which are able to retrieve well defined
structured data types (for example InterestRateMarketData).

Financial Modelling Extension Points

” /Fairmat/HistoricallnterestRates” interface
IHistoricallnterestRates

Provides historical values of rates indices like Libor and Euribors.

? /Fairmat/ExtensibleProcess” interface IExtensibleProcess

5 CIOE)


https://github.com/fairmat/ModelingTools/blob/master/DatesGenerator/DateSequenceForm.cs
https://github.com/fairmat/ModelingTools/blob/master/DatesGenerator/DateSequenceForm.cs

Fairmat extension points ﬂfalrmat

Describes a new stochastic process

An example of this interface can be found at https://github.com /fairmat /-
EquityModels/blob/master/Heston/HestonProcess.cs

® 7 /Fairmat/SimulatedRandomVariable” interface
ISimulatedRandomVariable

Describes a random variable which realizations are simulated within the
project.

® 7 /Fairmat /RandomNumbersGenerator” interface
IRandomNumbersGenerator

Implements an alternative random number generator.

An example of this interface can be found at https://github.com/fairmat /-
RandomNumberGenerators/blob/master /RandomSourcesSupport/RandomSourcesManager.cs

® 7 /Fairmat/CustomVector” interface ICustomVector

Enables the definition of vector-like symbols which values are calculated
from other inputs.

® ” /Fairmat/Analysis” interface IAnalysis

Performs an analysis made on a project. Built in pricing, sensitivities,
greeks derivatives and other analysis implements that interface.

® ” /Fairmat/Estimator” interface IEstimator

Provides an estimation procedure for a given asset class.

An example of this interface can be found at https://github.com/fairmat /-
InterestRatesModels/blob/master/Pelsser/CapletEstimator.cs

® 7 /Fairmat/AutomaticCalibration” interface
IAutomaticCalibration

Organizes the entire process of calibration, starting from market data
recovery

® 7 /Fairmat/DocumentTemplate” interface IDocumentTemplate
Generates a new Fairmat’s document starting from a template.

® 7 /Fairmat/StochasticProcessOperation” interface
IObjectOperation

Populates the stochastic process contextual menu. It can be used to modi-
fies properties or execute operations on stochastic processes. The available
options appears as in the figure below.

6 CIOE)


https://github.com/fairmat/EquityModels/blob/master/Heston/HestonProcess.cs
https://github.com/fairmat/EquityModels/blob/master/Heston/HestonProcess.cs
https://github.com/fairmat/RandomNumberGenerators/blob/master/RandomSourcesSupport/RandomSourcesManager.cs
https://github.com/fairmat/RandomNumberGenerators/blob/master/RandomSourcesSupport/RandomSourcesManager.cs
https://github.com/fairmat/InterestRatesModels/blob/master/Pelsser/CapletEstimator.cs
https://github.com/fairmat/InterestRatesModels/blob/master/Pelsser/CapletEstimator.cs

2 Fairmat extension points ﬂfalrmat

= | Analysis Valuation - Starting node - Simulation Date

Stochastic Processes [ == =

| AddS. Process

Mame Descrption Type

Estimate/Calibrate the model from an xml file

Import the model parameters from an xml file

[ Comions ]

JUUOLe

® 7 /Fairmat/NumericalSolver” interface INumericalSolver

Provides numerical a algorithm implementation. At the moment two nu-
merical algorithms has been implemented (Monte Carlo Simulation and
Binomial lattices)

® 7 /Fairmat/UIFunction” interface IUIFunction

Defines a new scalar function available to the user interface. The function
must return a scalar (double) value, and its arguments must be of the
following two types, object or double

® 7 /Fairmat/UlConstant” interface IUIConstant

Defines a new Reserved constant available to the Fairmat user interface.

® 7 /Fairmat/UserSettings” interface ISettings

Allows plug-ins to define per user settings. Fairmat handles the edit-
ing/loading/saving for all the settings. A plug-in can retrieve a class
which defines per-user settings by using the API defined in the class DV-
PLI.UserSettings. (For more details see the User Settings section later in
this guide)

An example of this interface can be found at https://github.com/fairmat /-
RandomNumberGenerators/blob/master /RandomSourcesSupport /RandomSourcesSettings.cs

2.4 Misc Extension points
® 7 /Fairmat/Test” interface ITest
Implements a test case.

® 7 /Fairmat/BigTest” interface ITest

Implements a test case specifying that is resources (cpu/memory) con-
suming.

® 7 /Fairmat/ParametricTest” interface IParametricTest

7 CIOE)


https://github.com/fairmat/RandomNumberGenerators/blob/master/RandomSourcesSupport/RandomSourcesSettings.cs
https://github.com/fairmat/RandomNumberGenerators/blob/master/RandomSourcesSupport/RandomSourcesSettings.cs

3 OpenCL support '[!falrmat

Implements a test case which can be parametrized
® 7 /Fairmat/StartupOperation” interface ICommand

Represents an operation that Fairmat will execute at startup.

An example of this interface can be found at https://github.com/fairmat /-
RandomNumberGenerators/blob/master /RandomSourcesSupport/RandomSourcesStartup.cs

® 7’ /Fairmat/PerformanceStats” interface
[Missing Description]

® ” /Fairmat/PluginState” interface IPluginState
Allows plug-ins to save their global variables.

® 7 /Fairmat/Objective” interface IObjective

Describes an objective function for the goal seeker

3 OpenCL support

3.1 Interface IOpenCLCode

This is the basic interface plugins need to use in order to be able to take advan-
tage of the OpenCL backend in Fairmat.

These shouldn’t be considered stable and might change. Support in Fairmat
for taking advantage of them will be available in future.

This interface is compromised of two properties: Arguments and Code.

public interface IOpenCLCode

{

List <Tuple<string ,object>> Arguments

{
}

get;

Dictionary <string ,string> Code

{
}

bool IsOpenCLUsable
{

}
}

get;

get;

8 CIOE)


https://github.com/fairmat/RandomNumberGenerators/blob/master/RandomSourcesSupport/RandomSourcesStartup.cs
https://github.com/fairmat/RandomNumberGenerators/blob/master/RandomSourcesSupport/RandomSourcesStartup.cs

4 Stochastic processes ﬂfalrmat

3.1.1 Arguments

The arguments property is a List of Tuple where the first element is the name
give to an argument, while the second element is the actual Object. It can be
of 3 types:

e double [] (double array)
e double
e ModelParameter (the parameter will be treated like a single double value)

If it’s not one of these there could be runtime exception during the execution of
the OpenCL simulator.

3.1.2 Code

The code is just a dictionary which changes its keys depending on the simulation
to be done and the items are pieces of bare pieces of code implementing the
requested code for the specific simulation. At the point of request it’s assumed
all variables are ready for use.

3.2 IsOpenCLUsable

This is used just to tell the simulator if the current instance of the plugin can
handle OpenCL calculations. For example some settings might interfere with
a proper use of the OpenCL backend, in these cases this is used to tell the
simulator that the OpenCL implementation isn’t usable. The value returned is
a simple boolean, which is true if it’s possible to use the instance of this plugin
for the OpenCL simulation.

4 Stochastic processes

4.1 Definition and Simulation

Stochastic process are defined by a collections of interfaces and attributes.

4.1.1 Automatic Generation of required parameters

Starting from Fairmat 1.4.0, the plugin interface allows to define some param-
eters that will be created when a new instance of a stochastic process is added
to the current model.

The objects referenced must be valid ModelParameters and also the attribute
must only be applied to IModelParameter classes.

This is done through the use of a new attribute called ExternalSymbolReference.

[ExternalSymbolReference (”Zrn” ,typeof (DVPLDOM. PFunction) ) ]

The attribute has two arguments, in order of definition:

9 CIOE)



4 Stochastic processes ﬂfa"—mat

e A suggested name for the newly created parameters being added to the
model.

e The type of object to create when crating the parameter.

Additionally there is a ”third” argument which is taken from the Mode1lParameter
definition which is its description. The description will be used to show to the
user what is actually being created.

When the stochastic process is instanced the system will search for the
ExternalSymbolReference attribute in the class and, for each, searches for
suitable objects of the request type already defined in the project. If none are
found, the user will be warned that a new one will be created, else the user will
be requested to choose between creating a new one or using an already defined
one.

When creating a new object the first parameter, containing a suggested
name, is used by adding, after the provided string, a progressive number, which
is increased when a new object with that name is created, to allow uniqueness
inside the project.

If any ExternalSymbolReference is found in the class, the interface IZeroRateReference,
which is now to be considered deprecated, will be ignored.

Example:

[ExternalSymbolReference (”Zrn” ,typeof (DVPLDOM. PFunction)) |
IModelParameter realZeroRate;

[ExternalSymbolReference (” Zri” ,typeof (DVPLDOM. PFunction)) |
IModelParameter secondaryZeroRate;

4.1.2 Markov Simulator

The most simple Markov simulators will just require to define in the code section
the code to generate the a and the § component. The rest of the parameters,
which aren’t mentioned here, will be inferred from data already present in order
to make the plugin with no OpenCL support work. The dictionary will contain,
S0, the @ component at the key A, and the 8 component at the key B.

Both the code chunks can access these variables:

e x (at the current time position, so the x+1 at the previous step) as a
pointer. So it’s possible to access dimensions by accessing the component
0, 1, 2, etc.

e a or b as a pointer, depending if the code chunk is for A or B. It’s possible
to access dimensions by accessing the component 0, 1, 2, etc.

e step The current step in the simulation starting from 0.

e All the variables passed from the Arguments array as pointers, named like
the first component of the Tuple.

10 D0€0



OO U W

[N O N N N R N R R e e e e e e e
DU WN OO U WN - OO

27
28

30

4 Stochastic processes ﬂfa"—mat

4.1.3 TIPostSimulationTransformation

In the case the plugin implements the IPostSimulationTransformation an ad-
ditional component is required to be present in the dictionary in order to use
OpenCL code: POSTRANSFORM. This Code is equivalent to the Transform()
method which is part of the IPostSimulationTransformation interface

e x (at position of the current simulation start) as a pointer. So it’s possible
to access dimensions by accessing the component step*0, step*1, step*2,
etc.

e dates The array of dates as pointer to doubles, each rappresents a step.

e stepN The total number of steps which have been done during the simu-
lation (and also the amount of items in the dates array)

e All the variables passed from the Arguments array as pointers, named like
the first component of the Tuple.

4.1.4 Markov Simulator Implementation Example

We will take Hull And White Community Edition to show an example of the
code required to implement OpenCL support on top of a basic Markov simula-
tion.

#region IOpenCLCode implementation
public List<Tuple<string, object>> Arguments
{
get {
List<Tuple<string , object>> arg =
new List<Tuple<string, object>>();
arg.Add(new Tuple<string, object>(”alphal” 6 alphal));
arg .Add(new Tuple<string, object>("sigmal”, sigmal));
arg.Add(new Tuple<string, object>("SEMI.DRIFT” , SEMI.DRIFT));
return arg;
}
}

public Dictionary<string ,string> Code
{
get {
Dictionary<string , string> sources =
new Dictionary<string, string>();
sources .Add(”B”, ”"xb_=_sigmal;”);
sources .Add(”A” , 7"xa_.=_SEMI.DRIFT [step]—alphal*x[0];”);
return sources;
}
}

public bool IsOpenCLUsable

{

get

{

return true;

}

1 D0€0



5 Case studies and examples ﬂfalrmat

31 }
32 #endregion

4.2 Stochastic Process Calibration

Calibration procedure for stochastic processes are defined by the object imple-
menting the IEstimator interface.

5 Case studies and examples

5.1 How to define new options blocks types using plug-ins

Even if Fairmat allows a lot of flexibility in defining the payoff, in some situations
may be convenient to create new option map objects. In order to define a new
option map leg the following objects must be created

e aclassimplementing the interfaces IMarketObject, IDrawingProperties.
The class must implement the interfaces IClosedFormValue and IClosedFormGreeks
if it implements closed form valuation, or IExpressionPayoff, or ICodePayoff
if the class implement simulation

e a class implementing the interface I0ptionMapDrawable and the Exten-
sion ” /Fairmat /Desktop/OptionMapDrawable” in order to define the graph-
ical aspect of the object.

e Choose a host (OptionTreeExtensible or OptionTreeExtensibleOperator)

5.2 How to define new stochastic process dynamics dy-
namics using plug-ins

Many process dynamic can be extended using plug-ins Fairmat enables two ways
for defining new stochastic process dynamics:

1. By taking control of the entire simulation process using the interface
IFullSimulator

2. If your process is a diffusion process, by implementing IMarkovSimulator.

In order to define a new stochastic process the following interfaces must be de-
fined IExtensibleProcess, or [ExtensibleProcessIR. The class must then define
either IMarkovSimulator or IFullSimulator. The following interfaces are op-
tional but are used by Fairmat if implemented IParsable, IPostSimulationTransformation.

5.2.1 Stochastic processes simulation workflow

Methods related to stochastic processes implementation are called in the follow-
ing order:

12 D0€0



5 Case studies and examples ﬂfa"—mat

1. Parses the object if the object implements IParsable.

2. The different queries are performed invoking IExtensibleProcess prop-
erties.

3. IExtensibleProcess.Setup is called

4. TFullSimulator.Simulate or IMarkovSimulator.a/b are invoker for ev-
ery discrete time-step and given realization.

5. If defined IPostSimulationTransformation.Transform is called.

5.3 Application level variables

Data that must be shared at application level may be stored on the Engine.Globals
dictionary. Defined keys are:

”MarketDataDBConnectionPath”

5.3.1 Examples

Engine. Globals. ContainsKey (” MarketDataDBConnectionPath”)
string path=Engine. Globals [” MarketDataDBConnectionPath”] as string;

5.4 Extensions defaults

In many cases plug-ins allows users to extend the software capabilities, by, for
example, defining new models for the underlying dynamics. In other contexts,
plug-ins may offer new implementations for application-level tasks such random
number generation or getting data for the preferred market data provider. Fair-
mat defines the following API for retrieving and registering a new default option
for a given task.

® Mono. Addins. TypeExtensionNode
DVPLI. ExensionsDefault . GetDefault (string extensionpath)

Retrieves the default value for an extension path

e void DVPLI. ExensionsDefault.SetDefault (string extensionpath ,
Mono. Addins . ExtensionNode node)

Register a news default for a given extension path. If the default has
already been defined it will be replaced.

e Void DVPLI. ExensionsDefault. RegisterDefault (string
extensionpath , Mono.Addins.ExtensionNode node)

Register a new default without overwriting it in the case it has already
been defined.

In Fairmat 1.2 nodes which provides defaults are:

13 D0€0



5 Case studies and examples ﬂfa"—mat

5.5 Handling Plug-ins settings

Fairmat allows plug-ins to define per-user-settings. Fairmat maintains those
settings within different users sessions. Settings can stored using serializable
classes. To use this feature, just create a class which implements the interface
DVPLI.ISettings, and the class attribute

[Extension (7 /Fairmat/UserSettings”) ]

Then you can use the following attributes to decorate the class fields. Use
the attribute [SettingsContainer]| to specify the human readable name of the
settings group defined by your UserSettings class and the attribute SettingDe-
scription to specify that a given field can be edited by the user interface. For
example:

[SettingDescription ("Human_readable_name”)] int fieldname;

SettingDescription works with every data type. Data input is enforced to be
valid for the given type. In the case of enums, a list box will be displayed. If
you need constraints to your data input, you can add specialized attributes to
enforce the validation (at user interface level) of the settings.

e [RangeSettingDescription]
Specifies the inclusive lower and upper bounds of an integer or real number.

Example:

[RangeSettingDescription (”Number_of_iterations”, 10, 100)]
int iterations;

® [PercentSettingDescription]

Displays a number or vector using percent
Example:

[RangeSettingDescription (” List .of_confidence.levels”)] Vector
confidenceLevels;

® [ListSettingDescription]

Specifies that the elements of the field must be taken form a list. Example:

[ListSettingDescription (" Choice” ;new string[]{"A” ,”B” ,”C" })]
string Choice;

[PathSettingDescription ]

Enforces that a string must be a valid path in the running system. The
user interface will also prompt a FileChoser dialog. Example:

[PathSettingDescription (” Exogenos_TS_realizations XML_file” )]
string OutputFile;

14 D0€0



0O Uk WN

5 Case studies and examples ﬂfa"—mat

® [DirectorySettingDescription ]

Enforces that a string must be a valid directory in the running system.
The user interface will prompt a directory picker dialog. Example:

[DirectorySettingDescription (” Output_directory”)] string
OutputDir;

[HideToUT]

Is a class level attribute and makes the class to behave like a setting
(Fairmat will save it contents when opening and closing sections) but will
be not visible to the user interface.

5.5.1 Settings usage and coding example

Below an example of a simple setting class
[SettingsContainer (” Settings._for _My_plugin”)]
[Extension (7 /Fairmat/UserSettings”) ]

[Serializable]
public class MyUserSetting : ISettings

{

[SettingDescription (” Parmater_a”)]

public int a;

[SettingDescription (7 Paramerer._b”) |

public double b;

[IsDirectory] [SettingDescription (”output.directory”)]
public string output;

}

Fairmat will handle the manage user interface editing and saving of the settings.
At the plug-in side use the following API to retrieve the settings.

MyUserSetting settings =
DVPLI. UserSettings . GetSettings (typeof(MyUserSetting)) as
MyUserSetting;

5.6 Case study: A simple extension

We describe step-by-step the operations needed to create a Fairmat plug-in with
either MS Visual Studio or Monodevelop.

le Create a new classlib project

2. Reference DVPLI.AIl, DVPLDOM.dIl, Mono.Addins.dll and Windows.Forms.

You can find those references in the Fairmat directory (C:
program files
Fairmat Academic on windows or /usr/local/fairmat on linuxes).

Remember to disable the option “copylocal” because those assemblies are
already shipped with the software. In future versions they will be signed
and will be available on the GAC.

15 D0€0



5 Case studies and examples I‘lfalrmat

@

© 00~ Ut WN

40
41
42
43

45
46
47
48
49
50

52
53

Create the a classfile with the following code:

using System;

using System. Collections. Generic;
using System.Windows. Forms;

using DVPLI;

using DVPLDOM;

using Mono. Addins;

[assembly: Addin(”DoclInfo”, 71.0”, Category = ”Info”)]
assembly : inDependency (7 Fairmat” , 7 1.
bl AddinD d ” Fai 7, 71.07

namespace Info

{

[Extension (” /Fairmat/DocumentToolUI") |
public class DocInfo : IDocumentToolUI

{

Document doc;
#region IDocumentToolUI Members

public IMyDocument Document

{

set
here save a reference to the documents
doc = (Document)value;
#endregion

#region ICommand Members

public void Execute ()
{
get the reference to the first project
ProjectROV prj = (ProjectROV) doc.DefaultProject;
int options = prj.Map.Root.CountSubOptions () ;
int processes = prj.Processes.Count;
int symbols = prj.Symbols.Count;

MessageBox . Show (string . Format (” Your_project.
contains_{0}_options ,{1}_processes._and._{2}.

user._defined _symbols” , options, processes,
symbols) ) ;

}

#endregion

#region IToolUlInfo Members

public string Category

{

get { return ”Info”; }

public string Description

{

get {return ”Document._info”;}

16 D0€0



6 Plug-ins writing tips ﬂfalrmat

54 }

56 public string ToolTipText

57 {

58 get { return ” Gives.info_about_the_project”; }
59

60

61 #endregion

62 }

4. Build the assembly and copy it in the Fairmat’s Plugins subdirectory. Al-
ternatively set the compiler to generate the output directly in the Plugins
subdirectory.

5. Run Fairmat, open or create a new document and in the tool menu you
will find a category voice “Info” with the “Document info” menu voice.

5.7 Additional resources

Several plugins are available in opensource form on github: https://github.com /fairmat,
so they can be used as great examples for writing your own plugin. We have

split plugins in several categories: Equity Models, Modeling Tools, Interest

Rates Models and Random Number Generators.

Equity Models Contains several plugins implementing Equity Models for Fair-
mat. It includes Historical Simulator, Dupire and Heston.
https://github.com/fairmat /EquityModels

Modeling Tools Contains several tools to aid modeling in Fairmat. It includes
PFunction2D and Dates Generator.
https://github.com/fairmat /ModelingTools

Interest Rates Models Contains several plugins implementing Interest Rates

Models. It includes Hull and White One Factor, Hull And White Two
Factors and the Pelsser’s Squared Gaussian model.

https://github.com/fairmat/InterestRatesModels

Random Number Generators Contains a framework to handle random sources
in an easy way, plus it includes an example using the qrng service in order
to obtain random numbers.

https://github.com/fairmat/RandomNumberGenerators
6 Plug-ins writing tips

e All plug-ins standard output generated by Console. Write or Console.WriteLine
calls, is redirected to the Fairmat log window.

17 D0€0


https://github.com/fairmat
https://github.com/fairmat/EquityModels
https://github.com/fairmat/ModelingTools
https://github.com/fairmat/InterestRatesModels
https://github.com/fairmat/RandomNumberGenerators

6 Plug-ins writing tips ﬂfalrmat

e In order to control the amount of outputs a plug-in should write, you can
condition the quantity of output to be written by reading at the (integer)
value DVPLI.Engine.Verbosity. You can control the value of this variable
from the user interface (Modeler preferences).

untitied - Fairmat Academic

Fle  Edit Analysis Settings Tools Help

DEH S

Structure ModeierPrefer_ence_s_‘ ﬁ

Discmi; General | Preview | Mvancedl

Option | hNurmber of decimals shown on outputs =
Stochastic A Repeated Analysis: number of replications il
Parameters ?: :
5 [T] Generate Latex Friendly outputs

[£] Use HAW?2 eriginal formulation (beta)

Verbosity level {0: no output 1: contained . 2: more information / 0

18 D0€0




	Introduction
	Fairmat extension points
	User Interface extension Points
	Input/output extension points
	Financial Modelling Extension Points
	Misc Extension points

	OpenCL support
	Interface IOpenCLCode
	Arguments
	Code

	IsOpenCLUsable

	Stochastic processes
	Definition and Simulation
	Automatic Generation of required parameters
	Markov Simulator
	IPostSimulationTransformation
	Markov Simulator Implementation Example

	Stochastic Process Calibration

	Case studies and examples
	How to define new options blocks types using plug-ins
	How to define new stochastic process dynamics dynamics using plug-ins
	Stochastic processes simulation workflow

	Application level variables
	Examples

	Extensions defaults
	Handling Plug-ins settings
	Settings usage and coding example

	Case study: A simple extension
	Additional resources

	Plug-ins writing tips

